Evaluate
10000000n
Differentiate w.r.t. n
10000000
Share
Copied to clipboard
\frac{400000\times 100n}{12}\times 3
Calculate 10 to the power of 2 and get 100.
\frac{40000000n}{12}\times 3
Multiply 400000 and 100 to get 40000000.
\frac{10000000}{3}n\times 3
Divide 40000000n by 12 to get \frac{10000000}{3}n.
10000000n
Cancel out 3 and 3.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{400000\times 100n}{12}\times 3)
Calculate 10 to the power of 2 and get 100.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{40000000n}{12}\times 3)
Multiply 400000 and 100 to get 40000000.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{10000000}{3}n\times 3)
Divide 40000000n by 12 to get \frac{10000000}{3}n.
\frac{\mathrm{d}}{\mathrm{d}n}(10000000n)
Cancel out 3 and 3.
10000000n^{1-1}
The derivative of ax^{n} is nax^{n-1}.
10000000n^{0}
Subtract 1 from 1.
10000000\times 1
For any term t except 0, t^{0}=1.
10000000
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}