Evaluate
\frac{503300000}{14641}\approx 34376.067208524
Factor
\frac{7 \cdot 719 \cdot 2 ^ {5} \cdot 5 ^ {5}}{11 ^ {4}} = 34376\frac{984}{14641} = 34376.06720852401
Share
Copied to clipboard
\frac{400000}{11}+\frac{50000}{1.1^{2}}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Expand \frac{40000}{1.1} by multiplying both numerator and the denominator by 10.
\frac{400000}{11}+\frac{50000}{1.21}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Calculate 1.1 to the power of 2 and get 1.21.
\frac{400000}{11}+\frac{5000000}{121}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Expand \frac{50000}{1.21} by multiplying both numerator and the denominator by 100.
\frac{4400000}{121}+\frac{5000000}{121}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Least common multiple of 11 and 121 is 121. Convert \frac{400000}{11} and \frac{5000000}{121} to fractions with denominator 121.
\frac{4400000+5000000}{121}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Since \frac{4400000}{121} and \frac{5000000}{121} have the same denominator, add them by adding their numerators.
\frac{9400000}{121}+\frac{30000}{1.1^{3}}+\frac{50000}{1.1^{4}}-100000
Add 4400000 and 5000000 to get 9400000.
\frac{9400000}{121}+\frac{30000}{1.331}+\frac{50000}{1.1^{4}}-100000
Calculate 1.1 to the power of 3 and get 1.331.
\frac{9400000}{121}+\frac{30000000}{1331}+\frac{50000}{1.1^{4}}-100000
Expand \frac{30000}{1.331} by multiplying both numerator and the denominator by 1000.
\frac{103400000}{1331}+\frac{30000000}{1331}+\frac{50000}{1.1^{4}}-100000
Least common multiple of 121 and 1331 is 1331. Convert \frac{9400000}{121} and \frac{30000000}{1331} to fractions with denominator 1331.
\frac{103400000+30000000}{1331}+\frac{50000}{1.1^{4}}-100000
Since \frac{103400000}{1331} and \frac{30000000}{1331} have the same denominator, add them by adding their numerators.
\frac{133400000}{1331}+\frac{50000}{1.1^{4}}-100000
Add 103400000 and 30000000 to get 133400000.
\frac{133400000}{1331}+\frac{50000}{1.4641}-100000
Calculate 1.1 to the power of 4 and get 1.4641.
\frac{133400000}{1331}+\frac{500000000}{14641}-100000
Expand \frac{50000}{1.4641} by multiplying both numerator and the denominator by 10000.
\frac{1467400000}{14641}+\frac{500000000}{14641}-100000
Least common multiple of 1331 and 14641 is 14641. Convert \frac{133400000}{1331} and \frac{500000000}{14641} to fractions with denominator 14641.
\frac{1467400000+500000000}{14641}-100000
Since \frac{1467400000}{14641} and \frac{500000000}{14641} have the same denominator, add them by adding their numerators.
\frac{1967400000}{14641}-100000
Add 1467400000 and 500000000 to get 1967400000.
\frac{1967400000}{14641}-\frac{1464100000}{14641}
Convert 100000 to fraction \frac{1464100000}{14641}.
\frac{1967400000-1464100000}{14641}
Since \frac{1967400000}{14641} and \frac{1464100000}{14641} have the same denominator, subtract them by subtracting their numerators.
\frac{503300000}{14641}
Subtract 1464100000 from 1967400000 to get 503300000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}