Evaluate
\frac{606700}{87}\approx 6973.563218391
Factor
\frac{6067 \cdot 2 ^ {2} \cdot 5 ^ {2}}{3 \cdot 29} = 6973\frac{49}{87} = 6973.563218390805
Share
Copied to clipboard
\frac{400000}{2175}\left(21.75+4.75+21.75\times 0.4\right)+500
Expand \frac{4000}{21.75} by multiplying both numerator and the denominator by 100.
\frac{16000}{87}\left(21.75+4.75+21.75\times 0.4\right)+500
Reduce the fraction \frac{400000}{2175} to lowest terms by extracting and canceling out 25.
\frac{16000}{87}\left(26.5+21.75\times 0.4\right)+500
Add 21.75 and 4.75 to get 26.5.
\frac{16000}{87}\left(26.5+8.7\right)+500
Multiply 21.75 and 0.4 to get 8.7.
\frac{16000}{87}\times 35.2+500
Add 26.5 and 8.7 to get 35.2.
\frac{16000}{87}\times \frac{176}{5}+500
Convert decimal number 35.2 to fraction \frac{352}{10}. Reduce the fraction \frac{352}{10} to lowest terms by extracting and canceling out 2.
\frac{16000\times 176}{87\times 5}+500
Multiply \frac{16000}{87} times \frac{176}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2816000}{435}+500
Do the multiplications in the fraction \frac{16000\times 176}{87\times 5}.
\frac{563200}{87}+500
Reduce the fraction \frac{2816000}{435} to lowest terms by extracting and canceling out 5.
\frac{563200}{87}+\frac{43500}{87}
Convert 500 to fraction \frac{43500}{87}.
\frac{563200+43500}{87}
Since \frac{563200}{87} and \frac{43500}{87} have the same denominator, add them by adding their numerators.
\frac{606700}{87}
Add 563200 and 43500 to get 606700.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}