Evaluate
\frac{8}{7}\approx 1.142857143
Factor
\frac{2 ^ {3}}{7} = 1\frac{1}{7} = 1.1428571428571428
Share
Copied to clipboard
\begin{array}{l}\phantom{3500)}\phantom{1}\\3500\overline{)4000}\\\end{array}
Use the 1^{st} digit 4 from dividend 4000
\begin{array}{l}\phantom{3500)}0\phantom{2}\\3500\overline{)4000}\\\end{array}
Since 4 is less than 3500, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}0\phantom{3}\\3500\overline{)4000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 4000
\begin{array}{l}\phantom{3500)}00\phantom{4}\\3500\overline{)4000}\\\end{array}
Since 40 is less than 3500, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}00\phantom{5}\\3500\overline{)4000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 4000
\begin{array}{l}\phantom{3500)}000\phantom{6}\\3500\overline{)4000}\\\end{array}
Since 400 is less than 3500, use the next digit 0 from dividend 4000 and add 0 to the quotient
\begin{array}{l}\phantom{3500)}000\phantom{7}\\3500\overline{)4000}\\\end{array}
Use the 4^{th} digit 0 from dividend 4000
\begin{array}{l}\phantom{3500)}0001\phantom{8}\\3500\overline{)4000}\\\phantom{3500)}\underline{\phantom{}3500\phantom{}}\\\phantom{3500)9}500\\\end{array}
Find closest multiple of 3500 to 4000. We see that 1 \times 3500 = 3500 is the nearest. Now subtract 3500 from 4000 to get reminder 500. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }500
Since 500 is less than 3500, stop the division. The reminder is 500. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}