Solve for a
a\in \left(-\infty,-\frac{\sqrt{82}}{4}\right)\cup \left(\frac{\sqrt{82}}{4},\infty\right)
Share
Copied to clipboard
656-128a^{2}<0
Add 400 and 256 to get 656.
-656+128a^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in 656-128a^{2} positive. Since -1 is negative, the inequality direction is changed.
a^{2}>\frac{41}{8}
Add \frac{41}{8} to both sides.
a^{2}>\left(\frac{\sqrt{82}}{4}\right)^{2}
Calculate the square root of \frac{41}{8} and get \frac{\sqrt{82}}{4}. Rewrite \frac{41}{8} as \left(\frac{\sqrt{82}}{4}\right)^{2}.
|a|>\frac{\sqrt{82}}{4}
Inequality holds for |a|>\frac{\sqrt{82}}{4}.
a<-\frac{\sqrt{82}}{4}\text{; }a>\frac{\sqrt{82}}{4}
Rewrite |a|>\frac{\sqrt{82}}{4} as a<-\frac{\sqrt{82}}{4}\text{; }a>\frac{\sqrt{82}}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}