Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

400=40x-x^{2}
Use the distributive property to multiply x by 40-x.
40x-x^{2}=400
Swap sides so that all variable terms are on the left hand side.
40x-x^{2}-400=0
Subtract 400 from both sides.
-x^{2}+40x-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 40 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
Square 40.
x=\frac{-40±\sqrt{1600+4\left(-400\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-40±\sqrt{1600-1600}}{2\left(-1\right)}
Multiply 4 times -400.
x=\frac{-40±\sqrt{0}}{2\left(-1\right)}
Add 1600 to -1600.
x=-\frac{40}{2\left(-1\right)}
Take the square root of 0.
x=-\frac{40}{-2}
Multiply 2 times -1.
x=20
Divide -40 by -2.
400=40x-x^{2}
Use the distributive property to multiply x by 40-x.
40x-x^{2}=400
Swap sides so that all variable terms are on the left hand side.
-x^{2}+40x=400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{400}{-1}
Divide both sides by -1.
x^{2}+\frac{40}{-1}x=\frac{400}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-40x=\frac{400}{-1}
Divide 40 by -1.
x^{2}-40x=-400
Divide 400 by -1.
x^{2}-40x+\left(-20\right)^{2}=-400+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-400+400
Square -20.
x^{2}-40x+400=0
Add -400 to 400.
\left(x-20\right)^{2}=0
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-20=0 x-20=0
Simplify.
x=20 x=20
Add 20 to both sides of the equation.
x=20
The equation is now solved. Solutions are the same.