Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

400\left(x-284\right)^{2}=x^{2}
Variable x cannot be equal to 284 since division by zero is not defined. Multiply both sides of the equation by \left(x-284\right)^{2}.
400\left(x^{2}-568x+80656\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-284\right)^{2}.
400x^{2}-227200x+32262400=x^{2}
Use the distributive property to multiply 400 by x^{2}-568x+80656.
400x^{2}-227200x+32262400-x^{2}=0
Subtract x^{2} from both sides.
399x^{2}-227200x+32262400=0
Combine 400x^{2} and -x^{2} to get 399x^{2}.
x=\frac{-\left(-227200\right)±\sqrt{\left(-227200\right)^{2}-4\times 399\times 32262400}}{2\times 399}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 399 for a, -227200 for b, and 32262400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-227200\right)±\sqrt{51619840000-4\times 399\times 32262400}}{2\times 399}
Square -227200.
x=\frac{-\left(-227200\right)±\sqrt{51619840000-1596\times 32262400}}{2\times 399}
Multiply -4 times 399.
x=\frac{-\left(-227200\right)±\sqrt{51619840000-51490790400}}{2\times 399}
Multiply -1596 times 32262400.
x=\frac{-\left(-227200\right)±\sqrt{129049600}}{2\times 399}
Add 51619840000 to -51490790400.
x=\frac{-\left(-227200\right)±11360}{2\times 399}
Take the square root of 129049600.
x=\frac{227200±11360}{2\times 399}
The opposite of -227200 is 227200.
x=\frac{227200±11360}{798}
Multiply 2 times 399.
x=\frac{238560}{798}
Now solve the equation x=\frac{227200±11360}{798} when ± is plus. Add 227200 to 11360.
x=\frac{5680}{19}
Reduce the fraction \frac{238560}{798} to lowest terms by extracting and canceling out 42.
x=\frac{215840}{798}
Now solve the equation x=\frac{227200±11360}{798} when ± is minus. Subtract 11360 from 227200.
x=\frac{5680}{21}
Reduce the fraction \frac{215840}{798} to lowest terms by extracting and canceling out 38.
x=\frac{5680}{19} x=\frac{5680}{21}
The equation is now solved.
400\left(x-284\right)^{2}=x^{2}
Variable x cannot be equal to 284 since division by zero is not defined. Multiply both sides of the equation by \left(x-284\right)^{2}.
400\left(x^{2}-568x+80656\right)=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-284\right)^{2}.
400x^{2}-227200x+32262400=x^{2}
Use the distributive property to multiply 400 by x^{2}-568x+80656.
400x^{2}-227200x+32262400-x^{2}=0
Subtract x^{2} from both sides.
399x^{2}-227200x+32262400=0
Combine 400x^{2} and -x^{2} to get 399x^{2}.
399x^{2}-227200x=-32262400
Subtract 32262400 from both sides. Anything subtracted from zero gives its negation.
\frac{399x^{2}-227200x}{399}=-\frac{32262400}{399}
Divide both sides by 399.
x^{2}-\frac{227200}{399}x=-\frac{32262400}{399}
Dividing by 399 undoes the multiplication by 399.
x^{2}-\frac{227200}{399}x+\left(-\frac{113600}{399}\right)^{2}=-\frac{32262400}{399}+\left(-\frac{113600}{399}\right)^{2}
Divide -\frac{227200}{399}, the coefficient of the x term, by 2 to get -\frac{113600}{399}. Then add the square of -\frac{113600}{399} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{227200}{399}x+\frac{12904960000}{159201}=-\frac{32262400}{399}+\frac{12904960000}{159201}
Square -\frac{113600}{399} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{227200}{399}x+\frac{12904960000}{159201}=\frac{32262400}{159201}
Add -\frac{32262400}{399} to \frac{12904960000}{159201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{113600}{399}\right)^{2}=\frac{32262400}{159201}
Factor x^{2}-\frac{227200}{399}x+\frac{12904960000}{159201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{113600}{399}\right)^{2}}=\sqrt{\frac{32262400}{159201}}
Take the square root of both sides of the equation.
x-\frac{113600}{399}=\frac{5680}{399} x-\frac{113600}{399}=-\frac{5680}{399}
Simplify.
x=\frac{5680}{19} x=\frac{5680}{21}
Add \frac{113600}{399} to both sides of the equation.