Solve for x
x=\frac{1}{5}=0.2
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Share
Copied to clipboard
\frac{400\left(-x+1\right)^{2}}{400}=\frac{256}{400}
Divide both sides by 400.
\left(-x+1\right)^{2}=\frac{256}{400}
Dividing by 400 undoes the multiplication by 400.
\left(-x+1\right)^{2}=\frac{16}{25}
Reduce the fraction \frac{256}{400} to lowest terms by extracting and canceling out 16.
-x+1=\frac{4}{5} -x+1=-\frac{4}{5}
Take the square root of both sides of the equation.
-x+1-1=\frac{4}{5}-1 -x+1-1=-\frac{4}{5}-1
Subtract 1 from both sides of the equation.
-x=\frac{4}{5}-1 -x=-\frac{4}{5}-1
Subtracting 1 from itself leaves 0.
-x=-\frac{1}{5}
Subtract 1 from \frac{4}{5}.
-x=-\frac{9}{5}
Subtract 1 from -\frac{4}{5}.
\frac{-x}{-1}=-\frac{\frac{1}{5}}{-1} \frac{-x}{-1}=-\frac{\frac{9}{5}}{-1}
Divide both sides by -1.
x=-\frac{\frac{1}{5}}{-1} x=-\frac{\frac{9}{5}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=\frac{1}{5}
Divide -\frac{1}{5} by -1.
x=\frac{9}{5}
Divide -\frac{9}{5} by -1.
x=\frac{1}{5} x=\frac{9}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}