400 \times 1.25 \times 20 \% =x \times 1.84 \times 98 \%
Solve for x
x = \frac{62500}{1127} = 55\frac{515}{1127} \approx 55.456965395
Graph
Share
Copied to clipboard
500\times \frac{20}{100}=x\times 1.84\times \frac{98}{100}
Multiply 400 and 1.25 to get 500.
500\times \frac{1}{5}=x\times 1.84\times \frac{98}{100}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{500}{5}=x\times 1.84\times \frac{98}{100}
Multiply 500 and \frac{1}{5} to get \frac{500}{5}.
100=x\times 1.84\times \frac{98}{100}
Divide 500 by 5 to get 100.
100=x\times 1.84\times \frac{49}{50}
Reduce the fraction \frac{98}{100} to lowest terms by extracting and canceling out 2.
100=x\times \frac{46}{25}\times \frac{49}{50}
Convert decimal number 1.84 to fraction \frac{184}{100}. Reduce the fraction \frac{184}{100} to lowest terms by extracting and canceling out 4.
100=x\times \frac{46\times 49}{25\times 50}
Multiply \frac{46}{25} times \frac{49}{50} by multiplying numerator times numerator and denominator times denominator.
100=x\times \frac{2254}{1250}
Do the multiplications in the fraction \frac{46\times 49}{25\times 50}.
100=x\times \frac{1127}{625}
Reduce the fraction \frac{2254}{1250} to lowest terms by extracting and canceling out 2.
x\times \frac{1127}{625}=100
Swap sides so that all variable terms are on the left hand side.
x=100\times \frac{625}{1127}
Multiply both sides by \frac{625}{1127}, the reciprocal of \frac{1127}{625}.
x=\frac{100\times 625}{1127}
Express 100\times \frac{625}{1127} as a single fraction.
x=\frac{62500}{1127}
Multiply 100 and 625 to get 62500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}