Evaluate
\frac{100}{7}\approx 14.285714286
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{7} = 14\frac{2}{7} = 14.285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)400}\\\end{array}
Since 4 is less than 28, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)400}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}12\\\end{array}
Find closest multiple of 28 to 40. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 40 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)400}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}120\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{28)}014\phantom{6}\\28\overline{)400}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}120\\\phantom{28)}\underline{\phantom{}112\phantom{}}\\\phantom{28)99}8\\\end{array}
Find closest multiple of 28 to 120. We see that 4 \times 28 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }8
Since 8 is less than 28, stop the division. The reminder is 8. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}