Evaluate
\frac{80}{41}\approx 1.951219512
Factor
\frac{2 ^ {4} \cdot 5}{41} = 1\frac{39}{41} = 1.951219512195122
Share
Copied to clipboard
\begin{array}{l}\phantom{205)}\phantom{1}\\205\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{205)}0\phantom{2}\\205\overline{)400}\\\end{array}
Since 4 is less than 205, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{205)}0\phantom{3}\\205\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{205)}00\phantom{4}\\205\overline{)400}\\\end{array}
Since 40 is less than 205, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{205)}00\phantom{5}\\205\overline{)400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{205)}001\phantom{6}\\205\overline{)400}\\\phantom{205)}\underline{\phantom{}205\phantom{}}\\\phantom{205)}195\\\end{array}
Find closest multiple of 205 to 400. We see that 1 \times 205 = 205 is the nearest. Now subtract 205 from 400 to get reminder 195. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }195
Since 195 is less than 205, stop the division. The reminder is 195. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}