Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

40t-t^{2}=400
Swap sides so that all variable terms are on the left hand side.
40t-t^{2}-400=0
Subtract 400 from both sides.
-t^{2}+40t-400=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=40 ab=-\left(-400\right)=400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -t^{2}+at+bt-400. To find a and b, set up a system to be solved.
1,400 2,200 4,100 5,80 8,50 10,40 16,25 20,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 400.
1+400=401 2+200=202 4+100=104 5+80=85 8+50=58 10+40=50 16+25=41 20+20=40
Calculate the sum for each pair.
a=20 b=20
The solution is the pair that gives sum 40.
\left(-t^{2}+20t\right)+\left(20t-400\right)
Rewrite -t^{2}+40t-400 as \left(-t^{2}+20t\right)+\left(20t-400\right).
-t\left(t-20\right)+20\left(t-20\right)
Factor out -t in the first and 20 in the second group.
\left(t-20\right)\left(-t+20\right)
Factor out common term t-20 by using distributive property.
t=20 t=20
To find equation solutions, solve t-20=0 and -t+20=0.
40t-t^{2}=400
Swap sides so that all variable terms are on the left hand side.
40t-t^{2}-400=0
Subtract 400 from both sides.
-t^{2}+40t-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 40 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-400\right)}}{2\left(-1\right)}
Square 40.
t=\frac{-40±\sqrt{1600+4\left(-400\right)}}{2\left(-1\right)}
Multiply -4 times -1.
t=\frac{-40±\sqrt{1600-1600}}{2\left(-1\right)}
Multiply 4 times -400.
t=\frac{-40±\sqrt{0}}{2\left(-1\right)}
Add 1600 to -1600.
t=-\frac{40}{2\left(-1\right)}
Take the square root of 0.
t=-\frac{40}{-2}
Multiply 2 times -1.
t=20
Divide -40 by -2.
40t-t^{2}=400
Swap sides so that all variable terms are on the left hand side.
-t^{2}+40t=400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-t^{2}+40t}{-1}=\frac{400}{-1}
Divide both sides by -1.
t^{2}+\frac{40}{-1}t=\frac{400}{-1}
Dividing by -1 undoes the multiplication by -1.
t^{2}-40t=\frac{400}{-1}
Divide 40 by -1.
t^{2}-40t=-400
Divide 400 by -1.
t^{2}-40t+\left(-20\right)^{2}=-400+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-40t+400=-400+400
Square -20.
t^{2}-40t+400=0
Add -400 to 400.
\left(t-20\right)^{2}=0
Factor t^{2}-40t+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-20\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
t-20=0 t-20=0
Simplify.
t=20 t=20
Add 20 to both sides of the equation.
t=20
The equation is now solved. Solutions are the same.