Solve for x (complex solution)
x=\frac{-3+\sqrt{3}i}{2}\approx -1.5+0.866025404i
x=\frac{-\sqrt{3}i-3}{2}\approx -1.5-0.866025404i
Graph
Share
Copied to clipboard
40+40+40x+40\left(1+x\right)^{2}=0
Use the distributive property to multiply 40 by 1+x.
80+40x+40\left(1+x\right)^{2}=0
Add 40 and 40 to get 80.
80+40x+40\left(1+2x+x^{2}\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
80+40x+40+80x+40x^{2}=0
Use the distributive property to multiply 40 by 1+2x+x^{2}.
120+40x+80x+40x^{2}=0
Add 80 and 40 to get 120.
120+120x+40x^{2}=0
Combine 40x and 80x to get 120x.
40x^{2}+120x+120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-120±\sqrt{120^{2}-4\times 40\times 120}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, 120 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\times 40\times 120}}{2\times 40}
Square 120.
x=\frac{-120±\sqrt{14400-160\times 120}}{2\times 40}
Multiply -4 times 40.
x=\frac{-120±\sqrt{14400-19200}}{2\times 40}
Multiply -160 times 120.
x=\frac{-120±\sqrt{-4800}}{2\times 40}
Add 14400 to -19200.
x=\frac{-120±40\sqrt{3}i}{2\times 40}
Take the square root of -4800.
x=\frac{-120±40\sqrt{3}i}{80}
Multiply 2 times 40.
x=\frac{-120+40\sqrt{3}i}{80}
Now solve the equation x=\frac{-120±40\sqrt{3}i}{80} when ± is plus. Add -120 to 40i\sqrt{3}.
x=\frac{-3+\sqrt{3}i}{2}
Divide -120+40i\sqrt{3} by 80.
x=\frac{-40\sqrt{3}i-120}{80}
Now solve the equation x=\frac{-120±40\sqrt{3}i}{80} when ± is minus. Subtract 40i\sqrt{3} from -120.
x=\frac{-\sqrt{3}i-3}{2}
Divide -120-40i\sqrt{3} by 80.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
The equation is now solved.
40+40+40x+40\left(1+x\right)^{2}=0
Use the distributive property to multiply 40 by 1+x.
80+40x+40\left(1+x\right)^{2}=0
Add 40 and 40 to get 80.
80+40x+40\left(1+2x+x^{2}\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
80+40x+40+80x+40x^{2}=0
Use the distributive property to multiply 40 by 1+2x+x^{2}.
120+40x+80x+40x^{2}=0
Add 80 and 40 to get 120.
120+120x+40x^{2}=0
Combine 40x and 80x to get 120x.
120x+40x^{2}=-120
Subtract 120 from both sides. Anything subtracted from zero gives its negation.
40x^{2}+120x=-120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{40x^{2}+120x}{40}=-\frac{120}{40}
Divide both sides by 40.
x^{2}+\frac{120}{40}x=-\frac{120}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}+3x=-\frac{120}{40}
Divide 120 by 40.
x^{2}+3x=-3
Divide -120 by 40.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
Add -3 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}