Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

40-\frac{8\left(x^{2}-8x-16\right)}{x^{2}-16}
Express 8\times \frac{x^{2}-8x-16}{x^{2}-16} as a single fraction.
40-\frac{8x^{2}-64x-128}{x^{2}-16}
Use the distributive property to multiply 8 by x^{2}-8x-16.
40-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{40x^{2}+160x-160x-640-8x^{2}+64x+128}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in 40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right).
\frac{32x^{2}+64x-512}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 40x^{2}+160x-160x-640-8x^{2}+64x+128.
\frac{32x^{2}+64x-512}{x^{2}-16}
Expand \left(x-4\right)\left(x+4\right).
40-\frac{8\left(x^{2}-8x-16\right)}{x^{2}-16}
Express 8\times \frac{x^{2}-8x-16}{x^{2}-16} as a single fraction.
40-\frac{8x^{2}-64x-128}{x^{2}-16}
Use the distributive property to multiply 8 by x^{2}-8x-16.
40-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{40x^{2}+160x-160x-640-8x^{2}+64x+128}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in 40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right).
\frac{32x^{2}+64x-512}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 40x^{2}+160x-160x-640-8x^{2}+64x+128.
\frac{32x^{2}+64x-512}{x^{2}-16}
Expand \left(x-4\right)\left(x+4\right).