Evaluate
32+\frac{64x}{x^{2}-16}
Expand
\frac{32\left(x^{2}+2x-16\right)}{x^{2}-16}
Graph
Share
Copied to clipboard
40-\frac{8\left(x^{2}-8x-16\right)}{x^{2}-16}
Express 8\times \frac{x^{2}-8x-16}{x^{2}-16} as a single fraction.
40-\frac{8x^{2}-64x-128}{x^{2}-16}
Use the distributive property to multiply 8 by x^{2}-8x-16.
40-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{40x^{2}+160x-160x-640-8x^{2}+64x+128}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in 40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right).
\frac{32x^{2}+64x-512}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 40x^{2}+160x-160x-640-8x^{2}+64x+128.
\frac{32x^{2}+64x-512}{x^{2}-16}
Expand \left(x-4\right)\left(x+4\right).
40-\frac{8\left(x^{2}-8x-16\right)}{x^{2}-16}
Express 8\times \frac{x^{2}-8x-16}{x^{2}-16} as a single fraction.
40-\frac{8x^{2}-64x-128}{x^{2}-16}
Use the distributive property to multiply 8 by x^{2}-8x-16.
40-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40 times \frac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}.
\frac{40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right)}{\left(x-4\right)\left(x+4\right)}
Since \frac{40\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{8x^{2}-64x-128}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{40x^{2}+160x-160x-640-8x^{2}+64x+128}{\left(x-4\right)\left(x+4\right)}
Do the multiplications in 40\left(x-4\right)\left(x+4\right)-\left(8x^{2}-64x-128\right).
\frac{32x^{2}+64x-512}{\left(x-4\right)\left(x+4\right)}
Combine like terms in 40x^{2}+160x-160x-640-8x^{2}+64x+128.
\frac{32x^{2}+64x-512}{x^{2}-16}
Expand \left(x-4\right)\left(x+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}