Factor
-\left(y-8\right)\left(y+5\right)
Evaluate
-\left(y-8\right)\left(y+5\right)
Graph
Share
Copied to clipboard
-y^{2}+3y+40
Multiply and combine like terms.
a+b=3 ab=-40=-40
Factor the expression by grouping. First, the expression needs to be rewritten as -y^{2}+ay+by+40. To find a and b, set up a system to be solved.
-1,40 -2,20 -4,10 -5,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -40.
-1+40=39 -2+20=18 -4+10=6 -5+8=3
Calculate the sum for each pair.
a=8 b=-5
The solution is the pair that gives sum 3.
\left(-y^{2}+8y\right)+\left(-5y+40\right)
Rewrite -y^{2}+3y+40 as \left(-y^{2}+8y\right)+\left(-5y+40\right).
-y\left(y-8\right)-5\left(y-8\right)
Factor out -y in the first and -5 in the second group.
\left(y-8\right)\left(-y-5\right)
Factor out common term y-8 by using distributive property.
40+3y-y^{2}
Combine -5y and 8y to get 3y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}