Solve for q
q = \frac{\sqrt{70}}{2} \approx 4.183300133
q = -\frac{\sqrt{70}}{2} \approx -4.183300133
Share
Copied to clipboard
40-2q^{2}=5
Multiply q and q to get q^{2}.
-2q^{2}=5-40
Subtract 40 from both sides.
-2q^{2}=-35
Subtract 40 from 5 to get -35.
q^{2}=\frac{-35}{-2}
Divide both sides by -2.
q^{2}=\frac{35}{2}
Fraction \frac{-35}{-2} can be simplified to \frac{35}{2} by removing the negative sign from both the numerator and the denominator.
q=\frac{\sqrt{70}}{2} q=-\frac{\sqrt{70}}{2}
Take the square root of both sides of the equation.
40-2q^{2}=5
Multiply q and q to get q^{2}.
40-2q^{2}-5=0
Subtract 5 from both sides.
35-2q^{2}=0
Subtract 5 from 40 to get 35.
-2q^{2}+35=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 35}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-2\right)\times 35}}{2\left(-2\right)}
Square 0.
q=\frac{0±\sqrt{8\times 35}}{2\left(-2\right)}
Multiply -4 times -2.
q=\frac{0±\sqrt{280}}{2\left(-2\right)}
Multiply 8 times 35.
q=\frac{0±2\sqrt{70}}{2\left(-2\right)}
Take the square root of 280.
q=\frac{0±2\sqrt{70}}{-4}
Multiply 2 times -2.
q=-\frac{\sqrt{70}}{2}
Now solve the equation q=\frac{0±2\sqrt{70}}{-4} when ± is plus.
q=\frac{\sqrt{70}}{2}
Now solve the equation q=\frac{0±2\sqrt{70}}{-4} when ± is minus.
q=-\frac{\sqrt{70}}{2} q=\frac{\sqrt{70}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}