Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3040=x\left(34-x\right)
Multiply 40 and 76 to get 3040.
3040=34x-x^{2}
Use the distributive property to multiply x by 34-x.
34x-x^{2}=3040
Swap sides so that all variable terms are on the left hand side.
34x-x^{2}-3040=0
Subtract 3040 from both sides.
-x^{2}+34x-3040=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-34±\sqrt{34^{2}-4\left(-1\right)\left(-3040\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 34 for b, and -3040 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-1\right)\left(-3040\right)}}{2\left(-1\right)}
Square 34.
x=\frac{-34±\sqrt{1156+4\left(-3040\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-34±\sqrt{1156-12160}}{2\left(-1\right)}
Multiply 4 times -3040.
x=\frac{-34±\sqrt{-11004}}{2\left(-1\right)}
Add 1156 to -12160.
x=\frac{-34±2\sqrt{2751}i}{2\left(-1\right)}
Take the square root of -11004.
x=\frac{-34±2\sqrt{2751}i}{-2}
Multiply 2 times -1.
x=\frac{-34+2\sqrt{2751}i}{-2}
Now solve the equation x=\frac{-34±2\sqrt{2751}i}{-2} when ± is plus. Add -34 to 2i\sqrt{2751}.
x=-\sqrt{2751}i+17
Divide -34+2i\sqrt{2751} by -2.
x=\frac{-2\sqrt{2751}i-34}{-2}
Now solve the equation x=\frac{-34±2\sqrt{2751}i}{-2} when ± is minus. Subtract 2i\sqrt{2751} from -34.
x=17+\sqrt{2751}i
Divide -34-2i\sqrt{2751} by -2.
x=-\sqrt{2751}i+17 x=17+\sqrt{2751}i
The equation is now solved.
3040=x\left(34-x\right)
Multiply 40 and 76 to get 3040.
3040=34x-x^{2}
Use the distributive property to multiply x by 34-x.
34x-x^{2}=3040
Swap sides so that all variable terms are on the left hand side.
-x^{2}+34x=3040
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+34x}{-1}=\frac{3040}{-1}
Divide both sides by -1.
x^{2}+\frac{34}{-1}x=\frac{3040}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-34x=\frac{3040}{-1}
Divide 34 by -1.
x^{2}-34x=-3040
Divide 3040 by -1.
x^{2}-34x+\left(-17\right)^{2}=-3040+\left(-17\right)^{2}
Divide -34, the coefficient of the x term, by 2 to get -17. Then add the square of -17 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-34x+289=-3040+289
Square -17.
x^{2}-34x+289=-2751
Add -3040 to 289.
\left(x-17\right)^{2}=-2751
Factor x^{2}-34x+289. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-17\right)^{2}}=\sqrt{-2751}
Take the square root of both sides of the equation.
x-17=\sqrt{2751}i x-17=-\sqrt{2751}i
Simplify.
x=17+\sqrt{2751}i x=-\sqrt{2751}i+17
Add 17 to both sides of the equation.