Evaluate
\frac{70}{3}\approx 23.333333333
Factor
\frac{2 \cdot 5 \cdot 7}{3} = 23\frac{1}{3} = 23.333333333333332
Share
Copied to clipboard
\frac{200+2}{5}-\frac{12\times 5+2}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Multiply 40 and 5 to get 200.
\frac{202}{5}-\frac{12\times 5+2}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Add 200 and 2 to get 202.
\frac{202}{5}-\frac{60+2}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Multiply 12 and 5 to get 60.
\frac{202}{5}-\frac{62}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Add 60 and 2 to get 62.
\frac{202-62}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Since \frac{202}{5} and \frac{62}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{140}{5}-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Subtract 62 from 202 to get 140.
28-\frac{\frac{12\times 5+2}{5}+\frac{1\times 5+3}{5}}{3}
Divide 140 by 5 to get 28.
28-\frac{\frac{60+2}{5}+\frac{1\times 5+3}{5}}{3}
Multiply 12 and 5 to get 60.
28-\frac{\frac{62}{5}+\frac{1\times 5+3}{5}}{3}
Add 60 and 2 to get 62.
28-\frac{\frac{62}{5}+\frac{5+3}{5}}{3}
Multiply 1 and 5 to get 5.
28-\frac{\frac{62}{5}+\frac{8}{5}}{3}
Add 5 and 3 to get 8.
28-\frac{\frac{62+8}{5}}{3}
Since \frac{62}{5} and \frac{8}{5} have the same denominator, add them by adding their numerators.
28-\frac{\frac{70}{5}}{3}
Add 62 and 8 to get 70.
28-\frac{14}{3}
Divide 70 by 5 to get 14.
\frac{84}{3}-\frac{14}{3}
Convert 28 to fraction \frac{84}{3}.
\frac{84-14}{3}
Since \frac{84}{3} and \frac{14}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{70}{3}
Subtract 14 from 84 to get 70.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}