Solve for a
a=60\left(m-1\right)
m\neq 1
Solve for m
m=\frac{a+60}{60}
a\neq 0
Share
Copied to clipboard
-\frac{1}{a}+\frac{m}{a}=\frac{\frac{2}{3}}{40}
Divide both sides by 40.
-\frac{1}{a}+\frac{m}{a}=\frac{2}{3\times 40}
Express \frac{\frac{2}{3}}{40} as a single fraction.
-\frac{1}{a}+\frac{m}{a}=\frac{2}{120}
Multiply 3 and 40 to get 120.
-\frac{1}{a}+\frac{m}{a}=\frac{1}{60}
Reduce the fraction \frac{2}{120} to lowest terms by extracting and canceling out 2.
-60+60m=a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60a, the least common multiple of a,60.
a=-60+60m
Swap sides so that all variable terms are on the left hand side.
a=-60+60m\text{, }a\neq 0
Variable a cannot be equal to 0.
-\frac{1}{a}+\frac{m}{a}=\frac{\frac{2}{3}}{40}
Divide both sides by 40.
-\frac{1}{a}+\frac{m}{a}=\frac{2}{3\times 40}
Express \frac{\frac{2}{3}}{40} as a single fraction.
-\frac{1}{a}+\frac{m}{a}=\frac{2}{120}
Multiply 3 and 40 to get 120.
-\frac{1}{a}+\frac{m}{a}=\frac{1}{60}
Reduce the fraction \frac{2}{120} to lowest terms by extracting and canceling out 2.
-60+60m=a
Multiply both sides of the equation by 60a, the least common multiple of a,60.
60m=a+60
Add 60 to both sides.
\frac{60m}{60}=\frac{a+60}{60}
Divide both sides by 60.
m=\frac{a+60}{60}
Dividing by 60 undoes the multiplication by 60.
m=\frac{a}{60}+1
Divide a+60 by 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}