Solve for t
t = \frac{6 \sqrt{11} - 14}{5} \approx 1.179949748
t=\frac{-6\sqrt{11}-14}{5}\approx -6.779949748
Share
Copied to clipboard
40=28t+5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
28t+5t^{2}=40
Swap sides so that all variable terms are on the left hand side.
28t+5t^{2}-40=0
Subtract 40 from both sides.
5t^{2}+28t-40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-28±\sqrt{28^{2}-4\times 5\left(-40\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 28 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-28±\sqrt{784-4\times 5\left(-40\right)}}{2\times 5}
Square 28.
t=\frac{-28±\sqrt{784-20\left(-40\right)}}{2\times 5}
Multiply -4 times 5.
t=\frac{-28±\sqrt{784+800}}{2\times 5}
Multiply -20 times -40.
t=\frac{-28±\sqrt{1584}}{2\times 5}
Add 784 to 800.
t=\frac{-28±12\sqrt{11}}{2\times 5}
Take the square root of 1584.
t=\frac{-28±12\sqrt{11}}{10}
Multiply 2 times 5.
t=\frac{12\sqrt{11}-28}{10}
Now solve the equation t=\frac{-28±12\sqrt{11}}{10} when ± is plus. Add -28 to 12\sqrt{11}.
t=\frac{6\sqrt{11}-14}{5}
Divide -28+12\sqrt{11} by 10.
t=\frac{-12\sqrt{11}-28}{10}
Now solve the equation t=\frac{-28±12\sqrt{11}}{10} when ± is minus. Subtract 12\sqrt{11} from -28.
t=\frac{-6\sqrt{11}-14}{5}
Divide -28-12\sqrt{11} by 10.
t=\frac{6\sqrt{11}-14}{5} t=\frac{-6\sqrt{11}-14}{5}
The equation is now solved.
40=28t+5t^{2}
Multiply \frac{1}{2} and 10 to get 5.
28t+5t^{2}=40
Swap sides so that all variable terms are on the left hand side.
5t^{2}+28t=40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5t^{2}+28t}{5}=\frac{40}{5}
Divide both sides by 5.
t^{2}+\frac{28}{5}t=\frac{40}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}+\frac{28}{5}t=8
Divide 40 by 5.
t^{2}+\frac{28}{5}t+\left(\frac{14}{5}\right)^{2}=8+\left(\frac{14}{5}\right)^{2}
Divide \frac{28}{5}, the coefficient of the x term, by 2 to get \frac{14}{5}. Then add the square of \frac{14}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{28}{5}t+\frac{196}{25}=8+\frac{196}{25}
Square \frac{14}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{28}{5}t+\frac{196}{25}=\frac{396}{25}
Add 8 to \frac{196}{25}.
\left(t+\frac{14}{5}\right)^{2}=\frac{396}{25}
Factor t^{2}+\frac{28}{5}t+\frac{196}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{14}{5}\right)^{2}}=\sqrt{\frac{396}{25}}
Take the square root of both sides of the equation.
t+\frac{14}{5}=\frac{6\sqrt{11}}{5} t+\frac{14}{5}=-\frac{6\sqrt{11}}{5}
Simplify.
t=\frac{6\sqrt{11}-14}{5} t=\frac{-6\sqrt{11}-14}{5}
Subtract \frac{14}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}