Solve for x
x=\frac{\sqrt{38}}{4}-1\approx 0.541103501
x=-\frac{\sqrt{38}}{4}-1\approx -2.541103501
Graph
Share
Copied to clipboard
40\left(x+1\right)^{2}+40-40=135-40
Subtract 40 from both sides of the equation.
40\left(x+1\right)^{2}=135-40
Subtracting 40 from itself leaves 0.
40\left(x+1\right)^{2}=95
Subtract 40 from 135.
\frac{40\left(x+1\right)^{2}}{40}=\frac{95}{40}
Divide both sides by 40.
\left(x+1\right)^{2}=\frac{95}{40}
Dividing by 40 undoes the multiplication by 40.
\left(x+1\right)^{2}=\frac{19}{8}
Reduce the fraction \frac{95}{40} to lowest terms by extracting and canceling out 5.
x+1=\frac{\sqrt{38}}{4} x+1=-\frac{\sqrt{38}}{4}
Take the square root of both sides of the equation.
x+1-1=\frac{\sqrt{38}}{4}-1 x+1-1=-\frac{\sqrt{38}}{4}-1
Subtract 1 from both sides of the equation.
x=\frac{\sqrt{38}}{4}-1 x=-\frac{\sqrt{38}}{4}-1
Subtracting 1 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}