40 + 0.5 ( c - 140 ) > 270 + 0.2 ( c - 27
Solve for c
c>982
Share
Copied to clipboard
40+0.5c-70>270+0.2\left(c-27\right)
Use the distributive property to multiply 0.5 by c-140.
-30+0.5c>270+0.2\left(c-27\right)
Subtract 70 from 40 to get -30.
-30+0.5c>270+0.2c-5.4
Use the distributive property to multiply 0.2 by c-27.
-30+0.5c>264.6+0.2c
Subtract 5.4 from 270 to get 264.6.
-30+0.5c-0.2c>264.6
Subtract 0.2c from both sides.
-30+0.3c>264.6
Combine 0.5c and -0.2c to get 0.3c.
0.3c>264.6+30
Add 30 to both sides.
0.3c>294.6
Add 264.6 and 30 to get 294.6.
c>\frac{294.6}{0.3}
Divide both sides by 0.3. Since 0.3 is positive, the inequality direction remains the same.
c>\frac{2946}{3}
Expand \frac{294.6}{0.3} by multiplying both numerator and the denominator by 10.
c>982
Divide 2946 by 3 to get 982.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}