Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

4.9t^{2}=1.38
Add 1.38 to both sides. Anything plus zero gives itself.
t^{2}=\frac{1.38}{4.9}
Divide both sides by 4.9.
t^{2}=\frac{138}{490}
Expand \frac{1.38}{4.9} by multiplying both numerator and the denominator by 100.
t^{2}=\frac{69}{245}
Reduce the fraction \frac{138}{490} to lowest terms by extracting and canceling out 2.
t=\frac{\sqrt{345}}{35} t=-\frac{\sqrt{345}}{35}
Take the square root of both sides of the equation.
4.9t^{2}-1.38=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\times 4.9\left(-1.38\right)}}{2\times 4.9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.9 for a, 0 for b, and -1.38 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 4.9\left(-1.38\right)}}{2\times 4.9}
Square 0.
t=\frac{0±\sqrt{-19.6\left(-1.38\right)}}{2\times 4.9}
Multiply -4 times 4.9.
t=\frac{0±\sqrt{27.048}}{2\times 4.9}
Multiply -19.6 times -1.38 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{0±\frac{7\sqrt{345}}{25}}{2\times 4.9}
Take the square root of 27.048.
t=\frac{0±\frac{7\sqrt{345}}{25}}{9.8}
Multiply 2 times 4.9.
t=\frac{\sqrt{345}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{345}}{25}}{9.8} when ± is plus.
t=-\frac{\sqrt{345}}{35}
Now solve the equation t=\frac{0±\frac{7\sqrt{345}}{25}}{9.8} when ± is minus.
t=\frac{\sqrt{345}}{35} t=-\frac{\sqrt{345}}{35}
The equation is now solved.