Solve for x
x = \frac{5 \sqrt{298} - 10}{49} \approx 1.55741597
x=\frac{-5\sqrt{298}-10}{49}\approx -1.965579235
Graph
Share
Copied to clipboard
4.9x^{2}+2x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 4.9\left(-15\right)}}{2\times 4.9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.9 for a, 2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4.9\left(-15\right)}}{2\times 4.9}
Square 2.
x=\frac{-2±\sqrt{4-19.6\left(-15\right)}}{2\times 4.9}
Multiply -4 times 4.9.
x=\frac{-2±\sqrt{4+294}}{2\times 4.9}
Multiply -19.6 times -15.
x=\frac{-2±\sqrt{298}}{2\times 4.9}
Add 4 to 294.
x=\frac{-2±\sqrt{298}}{9.8}
Multiply 2 times 4.9.
x=\frac{\sqrt{298}-2}{9.8}
Now solve the equation x=\frac{-2±\sqrt{298}}{9.8} when ± is plus. Add -2 to \sqrt{298}.
x=\frac{5\sqrt{298}-10}{49}
Divide -2+\sqrt{298} by 9.8 by multiplying -2+\sqrt{298} by the reciprocal of 9.8.
x=\frac{-\sqrt{298}-2}{9.8}
Now solve the equation x=\frac{-2±\sqrt{298}}{9.8} when ± is minus. Subtract \sqrt{298} from -2.
x=\frac{-5\sqrt{298}-10}{49}
Divide -2-\sqrt{298} by 9.8 by multiplying -2-\sqrt{298} by the reciprocal of 9.8.
x=\frac{5\sqrt{298}-10}{49} x=\frac{-5\sqrt{298}-10}{49}
The equation is now solved.
4.9x^{2}+2x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4.9x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
4.9x^{2}+2x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
4.9x^{2}+2x=15
Subtract -15 from 0.
\frac{4.9x^{2}+2x}{4.9}=\frac{15}{4.9}
Divide both sides of the equation by 4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{2}{4.9}x=\frac{15}{4.9}
Dividing by 4.9 undoes the multiplication by 4.9.
x^{2}+\frac{20}{49}x=\frac{15}{4.9}
Divide 2 by 4.9 by multiplying 2 by the reciprocal of 4.9.
x^{2}+\frac{20}{49}x=\frac{150}{49}
Divide 15 by 4.9 by multiplying 15 by the reciprocal of 4.9.
x^{2}+\frac{20}{49}x+\frac{10}{49}^{2}=\frac{150}{49}+\frac{10}{49}^{2}
Divide \frac{20}{49}, the coefficient of the x term, by 2 to get \frac{10}{49}. Then add the square of \frac{10}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{150}{49}+\frac{100}{2401}
Square \frac{10}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{7450}{2401}
Add \frac{150}{49} to \frac{100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{49}\right)^{2}=\frac{7450}{2401}
Factor x^{2}+\frac{20}{49}x+\frac{100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{7450}{2401}}
Take the square root of both sides of the equation.
x+\frac{10}{49}=\frac{5\sqrt{298}}{49} x+\frac{10}{49}=-\frac{5\sqrt{298}}{49}
Simplify.
x=\frac{5\sqrt{298}-10}{49} x=\frac{-5\sqrt{298}-10}{49}
Subtract \frac{10}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}