Evaluate
\frac{46}{3}\approx 15.333333333
Factor
\frac{2 \cdot 23}{3} = 15\frac{1}{3} = 15.333333333333334
Share
Copied to clipboard
\frac{19}{4}\times \frac{8}{19}+\frac{\frac{14\times 3+2}{3}}{1.1}
Convert decimal number 4.75 to fraction \frac{475}{100}. Reduce the fraction \frac{475}{100} to lowest terms by extracting and canceling out 25.
\frac{19\times 8}{4\times 19}+\frac{\frac{14\times 3+2}{3}}{1.1}
Multiply \frac{19}{4} times \frac{8}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{4}+\frac{\frac{14\times 3+2}{3}}{1.1}
Cancel out 19 in both numerator and denominator.
2+\frac{\frac{14\times 3+2}{3}}{1.1}
Divide 8 by 4 to get 2.
2+\frac{14\times 3+2}{3\times 1.1}
Express \frac{\frac{14\times 3+2}{3}}{1.1} as a single fraction.
2+\frac{42+2}{3\times 1.1}
Multiply 14 and 3 to get 42.
2+\frac{44}{3\times 1.1}
Add 42 and 2 to get 44.
2+\frac{44}{3.3}
Multiply 3 and 1.1 to get 3.3.
2+\frac{440}{33}
Expand \frac{44}{3.3} by multiplying both numerator and the denominator by 10.
2+\frac{40}{3}
Reduce the fraction \frac{440}{33} to lowest terms by extracting and canceling out 11.
\frac{6}{3}+\frac{40}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{6+40}{3}
Since \frac{6}{3} and \frac{40}{3} have the same denominator, add them by adding their numerators.
\frac{46}{3}
Add 6 and 40 to get 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}