Solve for x (complex solution)
x=\frac{5+i\sqrt{7495}}{94}\approx 0.053191489+0.920996469i
x=\frac{-i\sqrt{7495}+5}{94}\approx 0.053191489-0.920996469i
Graph
Share
Copied to clipboard
4.7x^{2}-0.5x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.5\right)±\sqrt{\left(-0.5\right)^{2}-4\times 4.7\times 4}}{2\times 4.7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.7 for a, -0.5 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.5\right)±\sqrt{0.25-4\times 4.7\times 4}}{2\times 4.7}
Square -0.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.5\right)±\sqrt{0.25-18.8\times 4}}{2\times 4.7}
Multiply -4 times 4.7.
x=\frac{-\left(-0.5\right)±\sqrt{0.25-75.2}}{2\times 4.7}
Multiply -18.8 times 4.
x=\frac{-\left(-0.5\right)±\sqrt{-74.95}}{2\times 4.7}
Add 0.25 to -75.2 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.5\right)±\frac{\sqrt{7495}i}{10}}{2\times 4.7}
Take the square root of -74.95.
x=\frac{0.5±\frac{\sqrt{7495}i}{10}}{2\times 4.7}
The opposite of -0.5 is 0.5.
x=\frac{0.5±\frac{\sqrt{7495}i}{10}}{9.4}
Multiply 2 times 4.7.
x=\frac{\frac{\sqrt{7495}i}{10}+\frac{1}{2}}{9.4}
Now solve the equation x=\frac{0.5±\frac{\sqrt{7495}i}{10}}{9.4} when ± is plus. Add 0.5 to \frac{i\sqrt{7495}}{10}.
x=\frac{5+\sqrt{7495}i}{94}
Divide \frac{1}{2}+\frac{i\sqrt{7495}}{10} by 9.4 by multiplying \frac{1}{2}+\frac{i\sqrt{7495}}{10} by the reciprocal of 9.4.
x=\frac{-\frac{\sqrt{7495}i}{10}+\frac{1}{2}}{9.4}
Now solve the equation x=\frac{0.5±\frac{\sqrt{7495}i}{10}}{9.4} when ± is minus. Subtract \frac{i\sqrt{7495}}{10} from 0.5.
x=\frac{-\sqrt{7495}i+5}{94}
Divide \frac{1}{2}-\frac{i\sqrt{7495}}{10} by 9.4 by multiplying \frac{1}{2}-\frac{i\sqrt{7495}}{10} by the reciprocal of 9.4.
x=\frac{5+\sqrt{7495}i}{94} x=\frac{-\sqrt{7495}i+5}{94}
The equation is now solved.
4.7x^{2}-0.5x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4.7x^{2}-0.5x+4-4=-4
Subtract 4 from both sides of the equation.
4.7x^{2}-0.5x=-4
Subtracting 4 from itself leaves 0.
\frac{4.7x^{2}-0.5x}{4.7}=-\frac{4}{4.7}
Divide both sides of the equation by 4.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.5}{4.7}\right)x=-\frac{4}{4.7}
Dividing by 4.7 undoes the multiplication by 4.7.
x^{2}-\frac{5}{47}x=-\frac{4}{4.7}
Divide -0.5 by 4.7 by multiplying -0.5 by the reciprocal of 4.7.
x^{2}-\frac{5}{47}x=-\frac{40}{47}
Divide -4 by 4.7 by multiplying -4 by the reciprocal of 4.7.
x^{2}-\frac{5}{47}x+\left(-\frac{5}{94}\right)^{2}=-\frac{40}{47}+\left(-\frac{5}{94}\right)^{2}
Divide -\frac{5}{47}, the coefficient of the x term, by 2 to get -\frac{5}{94}. Then add the square of -\frac{5}{94} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{47}x+\frac{25}{8836}=-\frac{40}{47}+\frac{25}{8836}
Square -\frac{5}{94} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{47}x+\frac{25}{8836}=-\frac{7495}{8836}
Add -\frac{40}{47} to \frac{25}{8836} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{94}\right)^{2}=-\frac{7495}{8836}
Factor x^{2}-\frac{5}{47}x+\frac{25}{8836}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{94}\right)^{2}}=\sqrt{-\frac{7495}{8836}}
Take the square root of both sides of the equation.
x-\frac{5}{94}=\frac{\sqrt{7495}i}{94} x-\frac{5}{94}=-\frac{\sqrt{7495}i}{94}
Simplify.
x=\frac{5+\sqrt{7495}i}{94} x=\frac{-\sqrt{7495}i+5}{94}
Add \frac{5}{94} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}