Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4.63\times \frac{1}{1000}\left(0.0123-x\right)=x^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{463}{100000}\left(0.0123-x\right)=x^{2}
Multiply 4.63 and \frac{1}{1000} to get \frac{463}{100000}.
\frac{56949}{1000000000}-\frac{463}{100000}x=x^{2}
Use the distributive property to multiply \frac{463}{100000} by 0.0123-x.
\frac{56949}{1000000000}-\frac{463}{100000}x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-\frac{463}{100000}x+\frac{56949}{1000000000}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{463}{100000}\right)±\sqrt{\left(-\frac{463}{100000}\right)^{2}-4\left(-1\right)\times \frac{56949}{1000000000}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{463}{100000} for b, and \frac{56949}{1000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{463}{100000}\right)±\sqrt{\frac{214369}{10000000000}-4\left(-1\right)\times \frac{56949}{1000000000}}}{2\left(-1\right)}
Square -\frac{463}{100000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{463}{100000}\right)±\sqrt{\frac{214369}{10000000000}+4\times \frac{56949}{1000000000}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{463}{100000}\right)±\sqrt{\frac{214369}{10000000000}+\frac{56949}{250000000}}}{2\left(-1\right)}
Multiply 4 times \frac{56949}{1000000000}.
x=\frac{-\left(-\frac{463}{100000}\right)±\sqrt{\frac{2492329}{10000000000}}}{2\left(-1\right)}
Add \frac{214369}{10000000000} to \frac{56949}{250000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{463}{100000}\right)±\frac{\sqrt{2492329}}{100000}}{2\left(-1\right)}
Take the square root of \frac{2492329}{10000000000}.
x=\frac{\frac{463}{100000}±\frac{\sqrt{2492329}}{100000}}{2\left(-1\right)}
The opposite of -\frac{463}{100000} is \frac{463}{100000}.
x=\frac{\frac{463}{100000}±\frac{\sqrt{2492329}}{100000}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{2492329}+463}{-2\times 100000}
Now solve the equation x=\frac{\frac{463}{100000}±\frac{\sqrt{2492329}}{100000}}{-2} when ± is plus. Add \frac{463}{100000} to \frac{\sqrt{2492329}}{100000}.
x=\frac{-\sqrt{2492329}-463}{200000}
Divide \frac{463+\sqrt{2492329}}{100000} by -2.
x=\frac{463-\sqrt{2492329}}{-2\times 100000}
Now solve the equation x=\frac{\frac{463}{100000}±\frac{\sqrt{2492329}}{100000}}{-2} when ± is minus. Subtract \frac{\sqrt{2492329}}{100000} from \frac{463}{100000}.
x=\frac{\sqrt{2492329}-463}{200000}
Divide \frac{463-\sqrt{2492329}}{100000} by -2.
x=\frac{-\sqrt{2492329}-463}{200000} x=\frac{\sqrt{2492329}-463}{200000}
The equation is now solved.
4.63\times \frac{1}{1000}\left(0.0123-x\right)=x^{2}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{463}{100000}\left(0.0123-x\right)=x^{2}
Multiply 4.63 and \frac{1}{1000} to get \frac{463}{100000}.
\frac{56949}{1000000000}-\frac{463}{100000}x=x^{2}
Use the distributive property to multiply \frac{463}{100000} by 0.0123-x.
\frac{56949}{1000000000}-\frac{463}{100000}x-x^{2}=0
Subtract x^{2} from both sides.
-\frac{463}{100000}x-x^{2}=-\frac{56949}{1000000000}
Subtract \frac{56949}{1000000000} from both sides. Anything subtracted from zero gives its negation.
-x^{2}-\frac{463}{100000}x=-\frac{56949}{1000000000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-\frac{463}{100000}x}{-1}=-\frac{\frac{56949}{1000000000}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{463}{100000}}{-1}\right)x=-\frac{\frac{56949}{1000000000}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{463}{100000}x=-\frac{\frac{56949}{1000000000}}{-1}
Divide -\frac{463}{100000} by -1.
x^{2}+\frac{463}{100000}x=\frac{56949}{1000000000}
Divide -\frac{56949}{1000000000} by -1.
x^{2}+\frac{463}{100000}x+\left(\frac{463}{200000}\right)^{2}=\frac{56949}{1000000000}+\left(\frac{463}{200000}\right)^{2}
Divide \frac{463}{100000}, the coefficient of the x term, by 2 to get \frac{463}{200000}. Then add the square of \frac{463}{200000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{463}{100000}x+\frac{214369}{40000000000}=\frac{56949}{1000000000}+\frac{214369}{40000000000}
Square \frac{463}{200000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{463}{100000}x+\frac{214369}{40000000000}=\frac{2492329}{40000000000}
Add \frac{56949}{1000000000} to \frac{214369}{40000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{463}{200000}\right)^{2}=\frac{2492329}{40000000000}
Factor x^{2}+\frac{463}{100000}x+\frac{214369}{40000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{463}{200000}\right)^{2}}=\sqrt{\frac{2492329}{40000000000}}
Take the square root of both sides of the equation.
x+\frac{463}{200000}=\frac{\sqrt{2492329}}{200000} x+\frac{463}{200000}=-\frac{\sqrt{2492329}}{200000}
Simplify.
x=\frac{\sqrt{2492329}-463}{200000} x=\frac{-\sqrt{2492329}-463}{200000}
Subtract \frac{463}{200000} from both sides of the equation.