Solve for x
x=-\frac{33y}{46}+\frac{2538}{115}
Solve for y
y=-\frac{46x}{33}+\frac{1692}{55}
Graph
Share
Copied to clipboard
4.6x=101.52-3.3y
Subtract 3.3y from both sides.
4.6x=-\frac{33y}{10}+101.52
The equation is in standard form.
\frac{4.6x}{4.6}=\frac{-\frac{33y}{10}+101.52}{4.6}
Divide both sides of the equation by 4.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{33y}{10}+101.52}{4.6}
Dividing by 4.6 undoes the multiplication by 4.6.
x=-\frac{33y}{46}+\frac{2538}{115}
Divide 101.52-\frac{33y}{10} by 4.6 by multiplying 101.52-\frac{33y}{10} by the reciprocal of 4.6.
3.3y=101.52-4.6x
Subtract 4.6x from both sides.
3.3y=-\frac{23x}{5}+101.52
The equation is in standard form.
\frac{3.3y}{3.3}=\frac{-\frac{23x}{5}+101.52}{3.3}
Divide both sides of the equation by 3.3, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{23x}{5}+101.52}{3.3}
Dividing by 3.3 undoes the multiplication by 3.3.
y=-\frac{46x}{33}+\frac{1692}{55}
Divide 101.52-\frac{23x}{5} by 3.3 by multiplying 101.52-\frac{23x}{5} by the reciprocal of 3.3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}