Solve for x
x=\frac{200y}{9}
Solve for y
y=\frac{9x}{200}
Graph
Share
Copied to clipboard
4.5x=100y
Add 100y to both sides. Anything plus zero gives itself.
\frac{4.5x}{4.5}=\frac{100y}{4.5}
Divide both sides of the equation by 4.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{100y}{4.5}
Dividing by 4.5 undoes the multiplication by 4.5.
x=\frac{200y}{9}
Divide 100y by 4.5 by multiplying 100y by the reciprocal of 4.5.
-100y=-4.5x
Subtract 4.5x from both sides. Anything subtracted from zero gives its negation.
-100y=-\frac{9x}{2}
The equation is in standard form.
\frac{-100y}{-100}=-\frac{\frac{9x}{2}}{-100}
Divide both sides by -100.
y=-\frac{\frac{9x}{2}}{-100}
Dividing by -100 undoes the multiplication by -100.
y=\frac{9x}{200}
Divide -\frac{9x}{2} by -100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}