Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20.25+x^{2}=9^{2}
Calculate 4.5 to the power of 2 and get 20.25.
20.25+x^{2}=81
Calculate 9 to the power of 2 and get 81.
x^{2}=81-20.25
Subtract 20.25 from both sides.
x^{2}=60.75
Subtract 20.25 from 81 to get 60.75.
x=\frac{9\sqrt{3}}{2} x=-\frac{9\sqrt{3}}{2}
Take the square root of both sides of the equation.
20.25+x^{2}=9^{2}
Calculate 4.5 to the power of 2 and get 20.25.
20.25+x^{2}=81
Calculate 9 to the power of 2 and get 81.
20.25+x^{2}-81=0
Subtract 81 from both sides.
-60.75+x^{2}=0
Subtract 81 from 20.25 to get -60.75.
x^{2}-60.75=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-60.75\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -60.75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-60.75\right)}}{2}
Square 0.
x=\frac{0±\sqrt{243}}{2}
Multiply -4 times -60.75.
x=\frac{0±9\sqrt{3}}{2}
Take the square root of 243.
x=\frac{9\sqrt{3}}{2}
Now solve the equation x=\frac{0±9\sqrt{3}}{2} when ± is plus.
x=-\frac{9\sqrt{3}}{2}
Now solve the equation x=\frac{0±9\sqrt{3}}{2} when ± is minus.
x=\frac{9\sqrt{3}}{2} x=-\frac{9\sqrt{3}}{2}
The equation is now solved.