Solve for x
x=\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}\approx 0.003901327
x=-\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}\approx -0.010833145
Graph
Quiz
Quadratic Equation
5 problems similar to:
4.4 { x }^{ 2 } +0.0305x-1.8596 \times { 10 }^{ -4 } = 0
Share
Copied to clipboard
4.4x^{2}+0.0305x-1.8596\times \frac{1}{10000}=0
Calculate 10 to the power of -4 and get \frac{1}{10000}.
4.4x^{2}+0.0305x-\frac{4649}{25000000}=0
Multiply 1.8596 and \frac{1}{10000} to get \frac{4649}{25000000}.
x=\frac{-0.0305±\sqrt{0.0305^{2}-4\times 4.4\left(-\frac{4649}{25000000}\right)}}{2\times 4.4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4.4 for a, 0.0305 for b, and -\frac{4649}{25000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.0305±\sqrt{0.00093025-4\times 4.4\left(-\frac{4649}{25000000}\right)}}{2\times 4.4}
Square 0.0305 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.0305±\sqrt{0.00093025-17.6\left(-\frac{4649}{25000000}\right)}}{2\times 4.4}
Multiply -4 times 4.4.
x=\frac{-0.0305±\sqrt{0.00093025+\frac{51139}{15625000}}}{2\times 4.4}
Multiply -17.6 times -\frac{4649}{25000000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0305±\sqrt{\frac{2101573}{500000000}}}{2\times 4.4}
Add 0.00093025 to \frac{51139}{15625000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0305±\frac{\sqrt{10507865}}{50000}}{2\times 4.4}
Take the square root of \frac{2101573}{500000000}.
x=\frac{-0.0305±\frac{\sqrt{10507865}}{50000}}{8.8}
Multiply 2 times 4.4.
x=\frac{\frac{\sqrt{10507865}}{50000}-\frac{61}{2000}}{8.8}
Now solve the equation x=\frac{-0.0305±\frac{\sqrt{10507865}}{50000}}{8.8} when ± is plus. Add -0.0305 to \frac{\sqrt{10507865}}{50000}.
x=\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}
Divide -\frac{61}{2000}+\frac{\sqrt{10507865}}{50000} by 8.8 by multiplying -\frac{61}{2000}+\frac{\sqrt{10507865}}{50000} by the reciprocal of 8.8.
x=\frac{-\frac{\sqrt{10507865}}{50000}-\frac{61}{2000}}{8.8}
Now solve the equation x=\frac{-0.0305±\frac{\sqrt{10507865}}{50000}}{8.8} when ± is minus. Subtract \frac{\sqrt{10507865}}{50000} from -0.0305.
x=-\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}
Divide -\frac{61}{2000}-\frac{\sqrt{10507865}}{50000} by 8.8 by multiplying -\frac{61}{2000}-\frac{\sqrt{10507865}}{50000} by the reciprocal of 8.8.
x=\frac{\sqrt{10507865}}{440000}-\frac{61}{17600} x=-\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}
The equation is now solved.
4.4x^{2}+0.0305x-1.8596\times \frac{1}{10000}=0
Calculate 10 to the power of -4 and get \frac{1}{10000}.
4.4x^{2}+0.0305x-\frac{4649}{25000000}=0
Multiply 1.8596 and \frac{1}{10000} to get \frac{4649}{25000000}.
4.4x^{2}+0.0305x=\frac{4649}{25000000}
Add \frac{4649}{25000000} to both sides. Anything plus zero gives itself.
\frac{4.4x^{2}+0.0305x}{4.4}=\frac{\frac{4649}{25000000}}{4.4}
Divide both sides of the equation by 4.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{0.0305}{4.4}x=\frac{\frac{4649}{25000000}}{4.4}
Dividing by 4.4 undoes the multiplication by 4.4.
x^{2}+\frac{61}{8800}x=\frac{\frac{4649}{25000000}}{4.4}
Divide 0.0305 by 4.4 by multiplying 0.0305 by the reciprocal of 4.4.
x^{2}+\frac{61}{8800}x=\frac{4649}{110000000}
Divide \frac{4649}{25000000} by 4.4 by multiplying \frac{4649}{25000000} by the reciprocal of 4.4.
x^{2}+\frac{61}{8800}x+\frac{61}{17600}^{2}=\frac{4649}{110000000}+\frac{61}{17600}^{2}
Divide \frac{61}{8800}, the coefficient of the x term, by 2 to get \frac{61}{17600}. Then add the square of \frac{61}{17600} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{61}{8800}x+\frac{3721}{309760000}=\frac{4649}{110000000}+\frac{3721}{309760000}
Square \frac{61}{17600} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{61}{8800}x+\frac{3721}{309760000}=\frac{2101573}{38720000000}
Add \frac{4649}{110000000} to \frac{3721}{309760000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{61}{17600}\right)^{2}=\frac{2101573}{38720000000}
Factor x^{2}+\frac{61}{8800}x+\frac{3721}{309760000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{61}{17600}\right)^{2}}=\sqrt{\frac{2101573}{38720000000}}
Take the square root of both sides of the equation.
x+\frac{61}{17600}=\frac{\sqrt{10507865}}{440000} x+\frac{61}{17600}=-\frac{\sqrt{10507865}}{440000}
Simplify.
x=\frac{\sqrt{10507865}}{440000}-\frac{61}{17600} x=-\frac{\sqrt{10507865}}{440000}-\frac{61}{17600}
Subtract \frac{61}{17600} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}