Evaluate
\frac{433}{105}\approx 4.123809524
Factor
\frac{433}{3 \cdot 5 \cdot 7} = 4\frac{13}{105} = 4.123809523809523
Share
Copied to clipboard
4.2-\frac{17.64-17}{2\times 4.2}
Calculate 4.2 to the power of 2 and get 17.64.
4.2-\frac{0.64}{2\times 4.2}
Subtract 17 from 17.64 to get 0.64.
4.2-\frac{0.64}{8.4}
Multiply 2 and 4.2 to get 8.4.
4.2-\frac{64}{840}
Expand \frac{0.64}{8.4} by multiplying both numerator and the denominator by 100.
4.2-\frac{8}{105}
Reduce the fraction \frac{64}{840} to lowest terms by extracting and canceling out 8.
\frac{21}{5}-\frac{8}{105}
Convert decimal number 4.2 to fraction \frac{42}{10}. Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
\frac{441}{105}-\frac{8}{105}
Least common multiple of 5 and 105 is 105. Convert \frac{21}{5} and \frac{8}{105} to fractions with denominator 105.
\frac{441-8}{105}
Since \frac{441}{105} and \frac{8}{105} have the same denominator, subtract them by subtracting their numerators.
\frac{433}{105}
Subtract 8 from 441 to get 433.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}