Solve for x
x=-\frac{31z}{70}+\frac{4000}{21}
Solve for z
z=-\frac{70x}{31}+\frac{40000}{93}
Share
Copied to clipboard
21x+9.3z=4000
Multiply 4.2 and 5 to get 21.
21x=4000-9.3z
Subtract 9.3z from both sides.
21x=-\frac{93z}{10}+4000
The equation is in standard form.
\frac{21x}{21}=\frac{-\frac{93z}{10}+4000}{21}
Divide both sides by 21.
x=\frac{-\frac{93z}{10}+4000}{21}
Dividing by 21 undoes the multiplication by 21.
x=-\frac{31z}{70}+\frac{4000}{21}
Divide 4000-\frac{93z}{10} by 21.
21x+9.3z=4000
Multiply 4.2 and 5 to get 21.
9.3z=4000-21x
Subtract 21x from both sides.
\frac{9.3z}{9.3}=\frac{4000-21x}{9.3}
Divide both sides of the equation by 9.3, which is the same as multiplying both sides by the reciprocal of the fraction.
z=\frac{4000-21x}{9.3}
Dividing by 9.3 undoes the multiplication by 9.3.
z=-\frac{70x}{31}+\frac{40000}{93}
Divide 4000-21x by 9.3 by multiplying 4000-21x by the reciprocal of 9.3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}