Evaluate
\frac{37}{9}\approx 4.111111111
Factor
\frac{37}{3 ^ {2}} = 4\frac{1}{9} = 4.111111111111111
Share
Copied to clipboard
\frac{41}{10}\times \frac{5}{6}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Convert decimal number 4.1 to fraction \frac{41}{10}.
\frac{41\times 5}{10\times 6}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Multiply \frac{41}{10} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{205}{60}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Do the multiplications in the fraction \frac{41\times 5}{10\times 6}.
\frac{41}{12}+\frac{4.1-\frac{3\times 15+4}{15}}{1.2}
Reduce the fraction \frac{205}{60} to lowest terms by extracting and canceling out 5.
\frac{41}{12}+\frac{4.1-\frac{45+4}{15}}{1.2}
Multiply 3 and 15 to get 45.
\frac{41}{12}+\frac{4.1-\frac{49}{15}}{1.2}
Add 45 and 4 to get 49.
\frac{41}{12}+\frac{\frac{41}{10}-\frac{49}{15}}{1.2}
Convert decimal number 4.1 to fraction \frac{41}{10}.
\frac{41}{12}+\frac{\frac{123}{30}-\frac{98}{30}}{1.2}
Least common multiple of 10 and 15 is 30. Convert \frac{41}{10} and \frac{49}{15} to fractions with denominator 30.
\frac{41}{12}+\frac{\frac{123-98}{30}}{1.2}
Since \frac{123}{30} and \frac{98}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{12}+\frac{\frac{25}{30}}{1.2}
Subtract 98 from 123 to get 25.
\frac{41}{12}+\frac{\frac{5}{6}}{1.2}
Reduce the fraction \frac{25}{30} to lowest terms by extracting and canceling out 5.
\frac{41}{12}+\frac{5}{6\times 1.2}
Express \frac{\frac{5}{6}}{1.2} as a single fraction.
\frac{41}{12}+\frac{5}{7.2}
Multiply 6 and 1.2 to get 7.2.
\frac{41}{12}+\frac{50}{72}
Expand \frac{5}{7.2} by multiplying both numerator and the denominator by 10.
\frac{41}{12}+\frac{25}{36}
Reduce the fraction \frac{50}{72} to lowest terms by extracting and canceling out 2.
\frac{123}{36}+\frac{25}{36}
Least common multiple of 12 and 36 is 36. Convert \frac{41}{12} and \frac{25}{36} to fractions with denominator 36.
\frac{123+25}{36}
Since \frac{123}{36} and \frac{25}{36} have the same denominator, add them by adding their numerators.
\frac{148}{36}
Add 123 and 25 to get 148.
\frac{37}{9}
Reduce the fraction \frac{148}{36} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}