Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4-x\right)^{2}=\left(\sqrt{x^{2}+4}\right)^{2}
Square both sides of the equation.
16-8x+x^{2}=\left(\sqrt{x^{2}+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16-8x+x^{2}=x^{2}+4
Calculate \sqrt{x^{2}+4} to the power of 2 and get x^{2}+4.
16-8x+x^{2}-x^{2}=4
Subtract x^{2} from both sides.
16-8x=4
Combine x^{2} and -x^{2} to get 0.
-8x=4-16
Subtract 16 from both sides.
-8x=-12
Subtract 16 from 4 to get -12.
x=\frac{-12}{-8}
Divide both sides by -8.
x=\frac{3}{2}
Reduce the fraction \frac{-12}{-8} to lowest terms by extracting and canceling out -4.
4-\frac{3}{2}=\sqrt{\left(\frac{3}{2}\right)^{2}+4}
Substitute \frac{3}{2} for x in the equation 4-x=\sqrt{x^{2}+4}.
\frac{5}{2}=\frac{5}{2}
Simplify. The value x=\frac{3}{2} satisfies the equation.
x=\frac{3}{2}
Equation 4-x=\sqrt{x^{2}+4} has a unique solution.