Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\times 4}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-16\times 4}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-1\right)±\sqrt{1-64}}{2\times 4}
Multiply -16 times 4.
x=\frac{-\left(-1\right)±\sqrt{-63}}{2\times 4}
Add 1 to -64.
x=\frac{-\left(-1\right)±3\sqrt{7}i}{2\times 4}
Take the square root of -63.
x=\frac{1±3\sqrt{7}i}{2\times 4}
The opposite of -1 is 1.
x=\frac{1±3\sqrt{7}i}{8}
Multiply 2 times 4.
x=\frac{1+3\sqrt{7}i}{8}
Now solve the equation x=\frac{1±3\sqrt{7}i}{8} when ± is plus. Add 1 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{8}
Now solve the equation x=\frac{1±3\sqrt{7}i}{8} when ± is minus. Subtract 3i\sqrt{7} from 1.
x=\frac{1+3\sqrt{7}i}{8} x=\frac{-3\sqrt{7}i+1}{8}
The equation is now solved.
4x^{2}-x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
4x^{2}-x+4-4=-4
Subtract 4 from both sides of the equation.
4x^{2}-x=-4
Subtracting 4 from itself leaves 0.
\frac{4x^{2}-x}{4}=-\frac{4}{4}
Divide both sides by 4.
x^{2}-\frac{1}{4}x=-\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{1}{4}x=-1
Divide -4 by 4.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-1+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-1+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{63}{64}
Add -1 to \frac{1}{64}.
\left(x-\frac{1}{8}\right)^{2}=-\frac{63}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{-\frac{63}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{3\sqrt{7}i}{8} x-\frac{1}{8}=-\frac{3\sqrt{7}i}{8}
Simplify.
x=\frac{1+3\sqrt{7}i}{8} x=\frac{-3\sqrt{7}i+1}{8}
Add \frac{1}{8} to both sides of the equation.