Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
4-6x-36=5\left(x-1\right)-23x
Use the distributive property to multiply -6 by x+6.
-32-6x=5\left(x-1\right)-23x
Subtract 36 from 4 to get -32.
-32-6x=5x-5-23x
Use the distributive property to multiply 5 by x-1.
-32-6x=-18x-5
Combine 5x and -23x to get -18x.
-32-6x+18x=-5
Add 18x to both sides.
-32+12x=-5
Combine -6x and 18x to get 12x.
12x=-5+32
Add 32 to both sides.
12x=27
Add -5 and 32 to get 27.
x=\frac{27}{12}
Divide both sides by 12.
x=\frac{9}{4}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}