Solve for x
x\leq 0
Graph
Share
Copied to clipboard
32-2\times 3\left(x+1\right)\geq 5\left(x+2\right)+16
Multiply both sides of the equation by 8, the least common multiple of 4,8. Since 8 is positive, the inequality direction remains the same.
32-6\left(x+1\right)\geq 5\left(x+2\right)+16
Multiply -2 and 3 to get -6.
32-6x-6\geq 5\left(x+2\right)+16
Use the distributive property to multiply -6 by x+1.
26-6x\geq 5\left(x+2\right)+16
Subtract 6 from 32 to get 26.
26-6x\geq 5x+10+16
Use the distributive property to multiply 5 by x+2.
26-6x\geq 5x+26
Add 10 and 16 to get 26.
26-6x-5x\geq 26
Subtract 5x from both sides.
26-11x\geq 26
Combine -6x and -5x to get -11x.
-11x\geq 26-26
Subtract 26 from both sides.
-11x\geq 0
Subtract 26 from 26 to get 0.
x\leq 0
Product of two numbers is ≥0 if both are ≥0 or both are ≤0. Since -11\leq 0, x must be ≤0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}