Solve for x
x = -\frac{55}{8} = -6\frac{7}{8} = -6.875
Graph
Share
Copied to clipboard
\left(4x-4\right)\left(x+2\right)-5\left(x+7\right)=\left(2x+3\right)^{2}-5x+3
Use the distributive property to multiply 4 by x-1.
4x^{2}+4x-8-5\left(x+7\right)=\left(2x+3\right)^{2}-5x+3
Use the distributive property to multiply 4x-4 by x+2 and combine like terms.
4x^{2}+4x-8-5x-35=\left(2x+3\right)^{2}-5x+3
Use the distributive property to multiply -5 by x+7.
4x^{2}-x-8-35=\left(2x+3\right)^{2}-5x+3
Combine 4x and -5x to get -x.
4x^{2}-x-43=\left(2x+3\right)^{2}-5x+3
Subtract 35 from -8 to get -43.
4x^{2}-x-43=4x^{2}+12x+9-5x+3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}-x-43=4x^{2}+7x+9+3
Combine 12x and -5x to get 7x.
4x^{2}-x-43=4x^{2}+7x+12
Add 9 and 3 to get 12.
4x^{2}-x-43-4x^{2}=7x+12
Subtract 4x^{2} from both sides.
-x-43=7x+12
Combine 4x^{2} and -4x^{2} to get 0.
-x-43-7x=12
Subtract 7x from both sides.
-8x-43=12
Combine -x and -7x to get -8x.
-8x=12+43
Add 43 to both sides.
-8x=55
Add 12 and 43 to get 55.
x=\frac{55}{-8}
Divide both sides by -8.
x=-\frac{55}{8}
Fraction \frac{55}{-8} can be rewritten as -\frac{55}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}