Verify
true
Share
Copied to clipboard
\frac{4\times 14}{3}+17-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Express 4\times \frac{14}{3} as a single fraction.
\frac{56}{3}+17-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Multiply 4 and 14 to get 56.
\frac{56}{3}+\frac{51}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Convert 17 to fraction \frac{51}{3}.
\frac{56+51}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Since \frac{56}{3} and \frac{51}{3} have the same denominator, add them by adding their numerators.
\frac{107}{3}-8\times \frac{14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Add 56 and 51 to get 107.
\frac{107}{3}-\frac{8\times 14}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Express 8\times \frac{14}{3} as a single fraction.
\frac{107}{3}-\frac{112}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Multiply 8 and 14 to get 112.
\frac{107-112}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Since \frac{107}{3} and \frac{112}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}+15\times \frac{14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Subtract 112 from 107 to get -5.
-\frac{5}{3}+\frac{15\times 14}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Express 15\times \frac{14}{3} as a single fraction.
-\frac{5}{3}+\frac{210}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Multiply 15 and 14 to get 210.
\frac{-5+210}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Since -\frac{5}{3} and \frac{210}{3} have the same denominator, add them by adding their numerators.
\frac{205}{3}=3-5\times \frac{14}{3}+19\times \frac{14}{3}
Add -5 and 210 to get 205.
\frac{205}{3}=3-\frac{5\times 14}{3}+19\times \frac{14}{3}
Express 5\times \frac{14}{3} as a single fraction.
\frac{205}{3}=3-\frac{70}{3}+19\times \frac{14}{3}
Multiply 5 and 14 to get 70.
\frac{205}{3}=\frac{9}{3}-\frac{70}{3}+19\times \frac{14}{3}
Convert 3 to fraction \frac{9}{3}.
\frac{205}{3}=\frac{9-70}{3}+19\times \frac{14}{3}
Since \frac{9}{3} and \frac{70}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{205}{3}=-\frac{61}{3}+19\times \frac{14}{3}
Subtract 70 from 9 to get -61.
\frac{205}{3}=-\frac{61}{3}+\frac{19\times 14}{3}
Express 19\times \frac{14}{3} as a single fraction.
\frac{205}{3}=-\frac{61}{3}+\frac{266}{3}
Multiply 19 and 14 to get 266.
\frac{205}{3}=\frac{-61+266}{3}
Since -\frac{61}{3} and \frac{266}{3} have the same denominator, add them by adding their numerators.
\frac{205}{3}=\frac{205}{3}
Add -61 and 266 to get 205.
\text{true}
Compare \frac{205}{3} and \frac{205}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}