Solve for y
y=\frac{43}{95}\approx 0.452631579
Graph
Share
Copied to clipboard
4\left(-\frac{73}{95}\right)+9y=1
Fraction \frac{-73}{95} can be rewritten as -\frac{73}{95} by extracting the negative sign.
\frac{4\left(-73\right)}{95}+9y=1
Express 4\left(-\frac{73}{95}\right) as a single fraction.
\frac{-292}{95}+9y=1
Multiply 4 and -73 to get -292.
-\frac{292}{95}+9y=1
Fraction \frac{-292}{95} can be rewritten as -\frac{292}{95} by extracting the negative sign.
9y=1+\frac{292}{95}
Add \frac{292}{95} to both sides.
9y=\frac{95}{95}+\frac{292}{95}
Convert 1 to fraction \frac{95}{95}.
9y=\frac{95+292}{95}
Since \frac{95}{95} and \frac{292}{95} have the same denominator, add them by adding their numerators.
9y=\frac{387}{95}
Add 95 and 292 to get 387.
y=\frac{\frac{387}{95}}{9}
Divide both sides by 9.
y=\frac{387}{95\times 9}
Express \frac{\frac{387}{95}}{9} as a single fraction.
y=\frac{387}{855}
Multiply 95 and 9 to get 855.
y=\frac{43}{95}
Reduce the fraction \frac{387}{855} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}