Solve for x
x=\frac{2\left(\sqrt{3}+1\right)}{\sin(\theta )}
\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}
Solve for θ
\theta =arcSin(2\left(1+3^{\frac{1}{2}}\right)x^{-1})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =\pi +2\pi n_{2}+\left(-1\right)arcSin(2x^{-1}\left(1+3^{\frac{1}{2}}\right))\text{, }n_{2}\in \mathrm{Z}
Graph
Share
Copied to clipboard
4\left(\frac{1}{2}+\sin(\frac{\pi }{3})\right)=x\sin(\theta )
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
4\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)=x\sin(\theta )
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
4\times \frac{1+\sqrt{3}}{2}=x\sin(\theta )
Since \frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
2\left(1+\sqrt{3}\right)=x\sin(\theta )
Cancel out 2, the greatest common factor in 4 and 2.
2+2\sqrt{3}=x\sin(\theta )
Use the distributive property to multiply 2 by 1+\sqrt{3}.
x\sin(\theta )=2+2\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
\sin(\theta )x=2\sqrt{3}+2
The equation is in standard form.
\frac{\sin(\theta )x}{\sin(\theta )}=\frac{2\sqrt{3}+2}{\sin(\theta )}
Divide both sides by \sin(\theta ).
x=\frac{2\sqrt{3}+2}{\sin(\theta )}
Dividing by \sin(\theta ) undoes the multiplication by \sin(\theta ).
x=\frac{2\left(\sqrt{3}+1\right)}{\sin(\theta )}
Divide 2+2\sqrt{3} by \sin(\theta ).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}