Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4=\left(x-300\right)^{2}
Multiply x-300 and x-300 to get \left(x-300\right)^{2}.
4=x^{2}-600x+90000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-300\right)^{2}.
x^{2}-600x+90000=4
Swap sides so that all variable terms are on the left hand side.
x^{2}-600x+90000-4=0
Subtract 4 from both sides.
x^{2}-600x+89996=0
Subtract 4 from 90000 to get 89996.
x=\frac{-\left(-600\right)±\sqrt{\left(-600\right)^{2}-4\times 89996}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -600 for b, and 89996 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-600\right)±\sqrt{360000-4\times 89996}}{2}
Square -600.
x=\frac{-\left(-600\right)±\sqrt{360000-359984}}{2}
Multiply -4 times 89996.
x=\frac{-\left(-600\right)±\sqrt{16}}{2}
Add 360000 to -359984.
x=\frac{-\left(-600\right)±4}{2}
Take the square root of 16.
x=\frac{600±4}{2}
The opposite of -600 is 600.
x=\frac{604}{2}
Now solve the equation x=\frac{600±4}{2} when ± is plus. Add 600 to 4.
x=302
Divide 604 by 2.
x=\frac{596}{2}
Now solve the equation x=\frac{600±4}{2} when ± is minus. Subtract 4 from 600.
x=298
Divide 596 by 2.
x=302 x=298
The equation is now solved.
4=\left(x-300\right)^{2}
Multiply x-300 and x-300 to get \left(x-300\right)^{2}.
4=x^{2}-600x+90000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-300\right)^{2}.
x^{2}-600x+90000=4
Swap sides so that all variable terms are on the left hand side.
\left(x-300\right)^{2}=4
Factor x^{2}-600x+90000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-300\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-300=2 x-300=-2
Simplify.
x=302 x=298
Add 300 to both sides of the equation.