Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4=\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
4=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=4
Swap sides so that all variable terms are on the left hand side.
x^{2}-2x+1-4=0
Subtract 4 from both sides.
x^{2}-2x-3=0
Subtract 4 from 1 to get -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2}
Take the square root of 16.
x=\frac{2±4}{2}
The opposite of -2 is 2.
x=\frac{6}{2}
Now solve the equation x=\frac{2±4}{2} when ± is plus. Add 2 to 4.
x=3
Divide 6 by 2.
x=-\frac{2}{2}
Now solve the equation x=\frac{2±4}{2} when ± is minus. Subtract 4 from 2.
x=-1
Divide -2 by 2.
x=3 x=-1
The equation is now solved.
4=\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
4=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=4
Swap sides so that all variable terms are on the left hand side.
\left(x-1\right)^{2}=4
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-1=2 x-1=-2
Simplify.
x=3 x=-1
Add 1 to both sides of the equation.