Evaluate
\frac{5896}{289}\approx 20.401384083
Factor
\frac{2 ^ {3} \cdot 11 \cdot 67}{17 ^ {2}} = 20\frac{116}{289} = 20.401384083044984
Share
Copied to clipboard
4+\frac{272+4}{17}+3\times \frac{4}{17}\times \frac{4}{17}
Multiply 16 and 17 to get 272.
4+\frac{276}{17}+3\times \frac{4}{17}\times \frac{4}{17}
Add 272 and 4 to get 276.
\frac{68}{17}+\frac{276}{17}+3\times \frac{4}{17}\times \frac{4}{17}
Convert 4 to fraction \frac{68}{17}.
\frac{68+276}{17}+3\times \frac{4}{17}\times \frac{4}{17}
Since \frac{68}{17} and \frac{276}{17} have the same denominator, add them by adding their numerators.
\frac{344}{17}+3\times \frac{4}{17}\times \frac{4}{17}
Add 68 and 276 to get 344.
\frac{344}{17}+\frac{3\times 4}{17}\times \frac{4}{17}
Express 3\times \frac{4}{17} as a single fraction.
\frac{344}{17}+\frac{12}{17}\times \frac{4}{17}
Multiply 3 and 4 to get 12.
\frac{344}{17}+\frac{12\times 4}{17\times 17}
Multiply \frac{12}{17} times \frac{4}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{344}{17}+\frac{48}{289}
Do the multiplications in the fraction \frac{12\times 4}{17\times 17}.
\frac{5848}{289}+\frac{48}{289}
Least common multiple of 17 and 289 is 289. Convert \frac{344}{17} and \frac{48}{289} to fractions with denominator 289.
\frac{5848+48}{289}
Since \frac{5848}{289} and \frac{48}{289} have the same denominator, add them by adding their numerators.
\frac{5896}{289}
Add 5848 and 48 to get 5896.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}