Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{3x+1}=5+\sqrt{x+4}-4
Subtract 4 from both sides of the equation.
\sqrt{3x+1}=1+\sqrt{x+4}
Subtract 4 from 5 to get 1.
\left(\sqrt{3x+1}\right)^{2}=\left(1+\sqrt{x+4}\right)^{2}
Square both sides of the equation.
3x+1=\left(1+\sqrt{x+4}\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
3x+1=1+2\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+4}\right)^{2}.
3x+1=1+2\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
3x+1=5+2\sqrt{x+4}+x
Add 1 and 4 to get 5.
3x+1-\left(5+x\right)=2\sqrt{x+4}
Subtract 5+x from both sides of the equation.
3x+1-5-x=2\sqrt{x+4}
To find the opposite of 5+x, find the opposite of each term.
3x-4-x=2\sqrt{x+4}
Subtract 5 from 1 to get -4.
2x-4=2\sqrt{x+4}
Combine 3x and -x to get 2x.
\left(2x-4\right)^{2}=\left(2\sqrt{x+4}\right)^{2}
Square both sides of the equation.
4x^{2}-16x+16=\left(2\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
4x^{2}-16x+16=2^{2}\left(\sqrt{x+4}\right)^{2}
Expand \left(2\sqrt{x+4}\right)^{2}.
4x^{2}-16x+16=4\left(\sqrt{x+4}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-16x+16=4\left(x+4\right)
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4x^{2}-16x+16=4x+16
Use the distributive property to multiply 4 by x+4.
4x^{2}-16x+16-4x=16
Subtract 4x from both sides.
4x^{2}-20x+16=16
Combine -16x and -4x to get -20x.
4x^{2}-20x+16-16=0
Subtract 16 from both sides.
4x^{2}-20x=0
Subtract 16 from 16 to get 0.
x\left(4x-20\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and 4x-20=0.
4+\sqrt{3\times 0+1}=5+\sqrt{0+4}
Substitute 0 for x in the equation 4+\sqrt{3x+1}=5+\sqrt{x+4}.
5=7
Simplify. The value x=0 does not satisfy the equation.
4+\sqrt{3\times 5+1}=5+\sqrt{5+4}
Substitute 5 for x in the equation 4+\sqrt{3x+1}=5+\sqrt{x+4}.
8=8
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{3x+1}=\sqrt{x+4}+1 has a unique solution.