Solve for x
x=5
Graph
Share
Copied to clipboard
\sqrt{3x+1}=5+\sqrt{x+4}-4
Subtract 4 from both sides of the equation.
\sqrt{3x+1}=1+\sqrt{x+4}
Subtract 4 from 5 to get 1.
\left(\sqrt{3x+1}\right)^{2}=\left(1+\sqrt{x+4}\right)^{2}
Square both sides of the equation.
3x+1=\left(1+\sqrt{x+4}\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
3x+1=1+2\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+4}\right)^{2}.
3x+1=1+2\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
3x+1=5+2\sqrt{x+4}+x
Add 1 and 4 to get 5.
3x+1-\left(5+x\right)=2\sqrt{x+4}
Subtract 5+x from both sides of the equation.
3x+1-5-x=2\sqrt{x+4}
To find the opposite of 5+x, find the opposite of each term.
3x-4-x=2\sqrt{x+4}
Subtract 5 from 1 to get -4.
2x-4=2\sqrt{x+4}
Combine 3x and -x to get 2x.
\left(2x-4\right)^{2}=\left(2\sqrt{x+4}\right)^{2}
Square both sides of the equation.
4x^{2}-16x+16=\left(2\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
4x^{2}-16x+16=2^{2}\left(\sqrt{x+4}\right)^{2}
Expand \left(2\sqrt{x+4}\right)^{2}.
4x^{2}-16x+16=4\left(\sqrt{x+4}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-16x+16=4\left(x+4\right)
Calculate \sqrt{x+4} to the power of 2 and get x+4.
4x^{2}-16x+16=4x+16
Use the distributive property to multiply 4 by x+4.
4x^{2}-16x+16-4x=16
Subtract 4x from both sides.
4x^{2}-20x+16=16
Combine -16x and -4x to get -20x.
4x^{2}-20x+16-16=0
Subtract 16 from both sides.
4x^{2}-20x=0
Subtract 16 from 16 to get 0.
x\left(4x-20\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and 4x-20=0.
4+\sqrt{3\times 0+1}=5+\sqrt{0+4}
Substitute 0 for x in the equation 4+\sqrt{3x+1}=5+\sqrt{x+4}.
5=7
Simplify. The value x=0 does not satisfy the equation.
4+\sqrt{3\times 5+1}=5+\sqrt{5+4}
Substitute 5 for x in the equation 4+\sqrt{3x+1}=5+\sqrt{x+4}.
8=8
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{3x+1}=\sqrt{x+4}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}