Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{1-18i}{2-i}
Combine 4z and -3z to get z.
z=\frac{\left(1-18i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{1-18i}{2-i} by the complex conjugate of the denominator, 2+i.
z=\frac{\left(1-18i\right)\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1-18i\right)\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1\times 2+i-18i\times 2-18i^{2}}{5}
Multiply complex numbers 1-18i and 2+i like you multiply binomials.
z=\frac{1\times 2+i-18i\times 2-18\left(-1\right)}{5}
By definition, i^{2} is -1.
z=\frac{2+i-36i+18}{5}
Do the multiplications in 1\times 2+i-18i\times 2-18\left(-1\right).
z=\frac{2+18+\left(1-36\right)i}{5}
Combine the real and imaginary parts in 2+i-36i+18.
z=\frac{20-35i}{5}
Do the additions in 2+18+\left(1-36\right)i.
z=4-7i
Divide 20-35i by 5 to get 4-7i.