Solve for x
x=-2+\frac{5}{2y}
y\neq 0
Solve for y
y=\frac{5}{2\left(x+2\right)}
x\neq -2
Graph
Share
Copied to clipboard
4yx+4y-3=2\left(yx+1\right)
Use the distributive property to multiply 4y by x+1.
4yx+4y-3=2yx+2
Use the distributive property to multiply 2 by yx+1.
4yx+4y-3-2yx=2
Subtract 2yx from both sides.
2yx+4y-3=2
Combine 4yx and -2yx to get 2yx.
2yx-3=2-4y
Subtract 4y from both sides.
2yx=2-4y+3
Add 3 to both sides.
2yx=5-4y
Add 2 and 3 to get 5.
\frac{2yx}{2y}=\frac{5-4y}{2y}
Divide both sides by 2y.
x=\frac{5-4y}{2y}
Dividing by 2y undoes the multiplication by 2y.
x=-2+\frac{5}{2y}
Divide 5-4y by 2y.
4yx+4y-3=2\left(yx+1\right)
Use the distributive property to multiply 4y by x+1.
4yx+4y-3=2yx+2
Use the distributive property to multiply 2 by yx+1.
4yx+4y-3-2yx=2
Subtract 2yx from both sides.
2yx+4y-3=2
Combine 4yx and -2yx to get 2yx.
2yx+4y=2+3
Add 3 to both sides.
2yx+4y=5
Add 2 and 3 to get 5.
\left(2x+4\right)y=5
Combine all terms containing y.
\frac{\left(2x+4\right)y}{2x+4}=\frac{5}{2x+4}
Divide both sides by 2x+4.
y=\frac{5}{2x+4}
Dividing by 2x+4 undoes the multiplication by 2x+4.
y=\frac{5}{2\left(x+2\right)}
Divide 5 by 2x+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}