Solve for y (complex solution)
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y=-2i
y=2i
Solve for y
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
4t^{2}+7t-36=0
Substitute t for y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 7 for b, and -36 for c in the quadratic formula.
t=\frac{-7±25}{8}
Do the calculations.
t=\frac{9}{4} t=-4
Solve the equation t=\frac{-7±25}{8} when ± is plus and when ± is minus.
y=-\frac{3}{2} y=\frac{3}{2} y=-2i y=2i
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
4t^{2}+7t-36=0
Substitute t for y^{2}.
t=\frac{-7±\sqrt{7^{2}-4\times 4\left(-36\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 7 for b, and -36 for c in the quadratic formula.
t=\frac{-7±25}{8}
Do the calculations.
t=\frac{9}{4} t=-4
Solve the equation t=\frac{-7±25}{8} when ± is plus and when ± is minus.
y=\frac{3}{2} y=-\frac{3}{2}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}