Solve for y
y=14
y=0
Graph
Share
Copied to clipboard
y\left(4y-89+33\right)=0
Factor out y.
y=0 y=14
To find equation solutions, solve y=0 and 4y-56=0.
4y^{2}-56y=0
Combine -89y and 33y to get -56y.
y=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -56 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-56\right)±56}{2\times 4}
Take the square root of \left(-56\right)^{2}.
y=\frac{56±56}{2\times 4}
The opposite of -56 is 56.
y=\frac{56±56}{8}
Multiply 2 times 4.
y=\frac{112}{8}
Now solve the equation y=\frac{56±56}{8} when ± is plus. Add 56 to 56.
y=14
Divide 112 by 8.
y=\frac{0}{8}
Now solve the equation y=\frac{56±56}{8} when ± is minus. Subtract 56 from 56.
y=0
Divide 0 by 8.
y=14 y=0
The equation is now solved.
4y^{2}-56y=0
Combine -89y and 33y to get -56y.
\frac{4y^{2}-56y}{4}=\frac{0}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{56}{4}\right)y=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-14y=\frac{0}{4}
Divide -56 by 4.
y^{2}-14y=0
Divide 0 by 4.
y^{2}-14y+\left(-7\right)^{2}=\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-14y+49=49
Square -7.
\left(y-7\right)^{2}=49
Factor y^{2}-14y+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-7\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
y-7=7 y-7=-7
Simplify.
y=14 y=0
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}